岩土力学 ›› 2024, Vol. 45 ›› Issue (4): 1081-1091.doi: 10.16285/j.rsm.2023.0531

• 基础理论与实验研究 • 上一篇    下一篇

冲击荷载下含夹层饱和砂土孔压变化规律分析

金丹丹1, 2,鲁先东1,王炳辉3,施展1,张雷3   

  1. 1.江苏大学 土木工程与力学学院,江苏 镇江212013;2.中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150000;3.江苏科技大学 土木工程与建筑学院,江苏 镇江 212100
  • 收稿日期:2023-04-24 接受日期:2023-06-22 出版日期:2024-04-17 发布日期:2024-04-17
  • 通讯作者: 王炳辉,男,1980年生,博士,副教授,主要从事土动力学方面的研究。E-mail:wbhchina@126.com
  • 作者简介:金丹丹,女,1987年生,博士,副教授,主要从事土动力学方面的研究。E-mail:jindd@ujs.edu.cn
  • 基金资助:
    中国地震局工程力学研究所实验室开放基金(No.2021D19);国家自然科学基金面上项目(No.51978317)。

Analysis of pore pressure variation pattern of saturated sandy soil containing interlayer under impact loading

JIN Dan-dan1, 2, LU Xian-dong1, WANG Bing-hui3, SHI Zhan1, ZHANG Lei3   

  1. 1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150000, China; 3. Faculty of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
  • Received:2023-04-24 Accepted:2023-06-22 Online:2024-04-17 Published:2024-04-17
  • Supported by:
    This work was supported by the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2021D19) and the General Program of National Natural Science Foundation of China (51978317).

摘要: 砂土中夹层的性状会影响饱和砂土孔压发展,从而影响砂土层变形。为研究夹层位置、厚度和种类等不同夹层状态下砂土液化过程中的孔压变化规律,设计了冲击荷载作用下层状砂液化试验,建立了含夹层饱和砂土理论模型,并将试验结果与理论分析进行对比。结果表明:含夹层饱和砂土的孔压发展呈现3个阶段,即快速上升、快速消散、缓慢消散阶段。高渗透性夹层高度越高,其下方土层孔压快速消散时长越短,越快趋于稳定值,但消散总时长无明显影响;低渗透性夹层高度或厚度的增大,均会使夹层上方孔压快速消散阶段速率加快,孔压消散稳定阶段延长,孔压消散总时长随之线性增长;同时,孔隙水会在低渗透性夹层下方形成水膜,夹层高度或厚度的增加均会使水膜持续时间增长,但水膜形态主要受夹层厚度影响。试验结果与理论分析较为一致,说明了试验的可靠性。

关键词: 层状砂土, 冲击荷载, 超孔隙水压力, 夹层高度, 夹层厚度, 水膜

Abstract: The existence of intercalation in sandy soil affect the pore pressure development in saturated sandy soil, thereby impacting the deformation of sandy soil layer. In order to study the pore pressure change during the liquefaction of sandy soil under different intercalation conditions such as location, thickness and type, a liquefaction test of laminated sand under impact load was conducted. This study involved establishing a theoretical model of saturated sandy soil with intercalations and comparing the test results with the theoretical analysis. The findings reveal that the development of pore pressure of saturated sandy soil containing intercalated layers exhibits three stages: rapid rise, rapid dissipation, and slow dissipation. In cases involving high-permeability intercalations, a higher location of the intercalation results in a shorter rapid dissipation time of pore pressure below it, leading to a faster convergence to a stable value. However, the total dissipation time shows no significant change. Conversely, for low-permeability intercalations, an increase in the height or thickness of the intercalation accelerates the rate of rapid dissipation phase of pore pressure above the intercalation, prolongs the stable phase of pore pressure dissipation, and linearly increases the total dissipation time of pore pressure. Additionally, a water film forms below the low-permeability intercalation, and increasing the intercalation height or thickness extends the duration of the water film, with the water film formation primarily affected by the intercalation thickness.. The test results are more consistent with the theoretical analysis, indicating the reliability of the test. The test results align more closely with the theoretical analysis, indicating the reliability of the test.

Key words: stratified sandy soil, impact load, excess pore water pressure, intercalation height, intercalation thickness, water film

中图分类号: 

  • TU 411.91
[1] 张宪尚, 文光才, 朱哲明, 隆清明, 刘杰, . 冲击荷载下充填节理岩体I型裂纹动态扩展特性研究[J]. 岩土力学, 2024, 45(2): 396-406.
[2] 姜明归, 孙伟, 李金鑫, 樊锴, 刘增, . 冲击荷载下全尾砂胶结充填体断裂特性与能耗特征分析[J]. 岩土力学, 2023, 44(S1): 186-196.
[3] 刘勇健, 傅杨攀, 赖明洋, 李彰明, 方昊圆, 谢治堃, . 冲击荷载下土体动力响应与加载速率效应研究[J]. 岩土力学, 2023, 44(9): 2485-2494.
[4] 王磊, 张帅, 刘怀谦, 陈礼鹏, 朱传奇, 李少波, 王安铖, . 冲击荷载下含瓦斯煤能量耗散及损伤破坏规律[J]. 岩土力学, 2023, 44(7): 1901-1915.
[5] 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683.
[6] 冉龙洲, 袁松, 王希宝, 王峥峥, 张生, . 明棚洞落石冲击荷载计算方法研究[J]. 岩土力学, 2023, 44(6): 1748-1760.
[7] 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344.
[8] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[9] 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860.
[10] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
[11] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[12] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[13] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[14] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[15] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[2] 吕海波,曾召田,赵艳林,卢 浩. 膨胀土强度干湿循环试验研究[J]. , 2009, 30(12): 3797 -3802 .
[3] 齐吉琳,马 巍. 冻土的力学性质及研究现状[J]. , 2010, 31(1): 133 -143 .
[4] 詹云刚,袁凡凡,栾茂田. 基于次加载面理论改进的ALPHA 模型及其数值实施[J]. , 2010, 31(2): 407 -415 .
[5] 卢坤林,杨 扬. 非极限主动土压力计算方法初探[J]. , 2010, 31(2): 615 -619 .
[6] 贺 炜,赵明华,陈永贵,王泓华. 土-水特征曲线滞后现象的微观机制与计算分析[J]. , 2010, 31(4): 1078 -1083 .
[7] 王 军,丁光亚,潘林有,蔡袁强,高玉峰. 静三轴试验中水泥土力学特性及本构模型研究[J]. , 2010, 31(5): 1407 -1412 .
[8] 武 雄,张顺峰,田 红,段庆伟,刘昌军,何秉顺,孙东亚. 铁矿开采对脖子梁副坝安全运行的影响[J]. , 2010, 31(5): 1517 -1521 .
[9] 汪攀峰,丁启朔. 黏土单层击实试验与制样因子研究[J]. , 2010, 31(6): 1797 -1802 .
[10] 王明年,崔光耀. 高烈度地震区隧道减震模型的建立及其减震效果模型试验研究[J]. , 2010, 31(6): 1884 -1890 .