›› 2014, Vol. 35 ›› Issue (8): 2314-2324.

• 岩土工程研究 • 上一篇    下一篇

甬江沉管隧道长期沉降监测数据及有限元分析

谢雄耀1, 2,王 培1, 2,李永盛1, 2,牛建宏3,覃 晖1, 2   

  1. 1.同济大学 岩土及地下工程教育部重点实验室,上海 200092; 2.同济大学 地下建筑与工程系,上海 200092;3.甬江隧道管理处,浙江 宁波 315800
  • 收稿日期:2014-04-11 出版日期:2014-08-12 发布日期:2014-08-14
  • 作者简介:谢雄耀,男,1972年生,博士,教授,主要从事隧道与地下工程无损检测、风险与防灾方面的研究工作。
  • 基金资助:

    国家重点基础研究发展(973)计划资助(No. 2011CB013800);国家自然基金项目资助(No. 41372273);上海市科学技术委员会计划资助(No. 12231200900,No. 13231200102)。

Monitoring data and finite element analysis of long term settlement of Yongjiang immersed tunnel

XIE Xiong-yao1, 2, WANG Pei1, 2, LI Yong-sheng1, 2, NIU Jian-hong3, QIN Hui1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Yongjiang Tunnel Administration, Ningbo, Zhejiang 315800, China
  • Received:2014-04-11 Online:2014-08-12 Published:2014-08-14

摘要: 甬江沉管隧道位于甬江下游河湾处的软土地基上,地基承载力较低,使隧道发生了较大的沉降。此外,甬江严重的淤积及每天2.67 m的潮差对隧道的沉降产生了显著的影响。依据甬江沉管隧道运营期间16 a的沉降监测数据,结合地层条件、潮汐和清淤资料,对该条沉管隧道的长期沉降进行了分析,并提出了基于流-固耦合理论的有限元方法计算沉管隧道的长期沉降,计算结果与监测结果具有较好的一致性。此外,采用上述计算方法分析了影响沉管隧道沉降的3个主要因素(即地层条件、基槽淤积和回淤与清淤)对隧道运营期沉降的影响。分析表明,地层条件是影响沉管隧道沉降的主要因素,软土地基隧道沉降远大于其他地基。潮汐作用会使隧道沉降发生周期性变化,该变化约占隧道运营期沉降的4%~10%。淤积对隧道长期沉降影响显著,但定期清淤只能短时间减小隧道的沉降,使隧道沉降产生周期性变化。上述结论均可为相关工程提供参考。

关键词: 沉管隧道, 沉降, 监测, 有限元模拟

Abstract: Yongjiang immersed tunnel, built in 1987 and opened in 1995, is a 420 m long road immersed tunnel. It is on the soft soil foundation in a bend of Yongjiang River, which has caused large settlement. Moreover, the severe sediment deposition and 2.67m tidal range in Yongjiang River also have a great influence on the settlement of tunnel. Based on the monitoring data of settlement, the paper analyses the subsoil conditions, tide and desilting’s influence on settlement. And a finite element method based on fluid-solid coupling method is put forward to simulate the long term settlement, and the simulation results are in good agreement with the monitoring data. In addition, the key influencing factors of tunnel settlement, including subsoil condition, trench siltation and siltation and desilting above the element, are calculated and compared. The monitoring data and finite element analysis show that the subsoil condition is the main factor that determines the magnitude of settlement, and the settlement of tunnel on soft soil is much larger than that on other kind of foundations; because of the tidal range, tunnel is subject to an oscillation of elevation which may account for 4%~10% of settlement of operation period; the effect of silting on tunnel is obvious, but regular desilting can only decrease the settlement temporarily and cause the settlement cyclic variation. Although the monitoring data were obtained from a specific project, the conclusions of the study are sufficiently general and may apply in other immersed tunneling projects.

Key words: immersed tunnel, settlement, monitoring, finite element simulation

中图分类号: 

  • TU 478
[1] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[2] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[3] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[4] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[5] 李志成, 冯先导, 沈立龙, . 沉管隧道含垄沟卵石垫层变形特性试验研究[J]. 岩土力学, 2019, 40(S1): 189-194.
[6] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[7] 郑 帅, 姜谙男, 张峰瑞, 张勇, 申发义, 姜旭东、. 基于机器学习与可靠度算法的围岩动态分级方法 及其工程应用[J]. 岩土力学, 2019, 40(S1): 308-318.
[8] 卢谅, 石通辉, 杨东, . 置换减载与加筋复合处理方法对路基不 均匀沉降控制效果研究[J]. 岩土力学, 2019, 40(9): 3474-3482.
[9] 李悄, 孟繁增, 牛远志. 压重顶进框构下穿高铁引起桥墩变形及控制技术[J]. 岩土力学, 2019, 40(9): 3618-3624.
[10] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[11] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[12] 杜文, 王永红, 李利, 朱连臣, 朱浩天, 王有旗, . 双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.
[13] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[14] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[15] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 毛 宁,张尧亮. 经验公式简便求法典型实例[J]. , 2010, 31(9): 2978 -2982 .
[5] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[6] 李伟华,赵成刚,杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. , 2010, 31(12): 3958 -3963 .
[7] 韩现民. 西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J]. , 2010, 31(S2): 297 -302 .
[8] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[9] 李兴高,刘维宁. 挡土结构上水-土压力分算的进一步探讨[J]. , 2009, 30(2): 419 -424 .
[10] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .