岩土力学 ›› 2021, Vol. 42 ›› Issue (8): 2195-2206.doi: 10.16285/j.rsm.2021.0175

• 基础理论与实验研究 • 上一篇    下一篇

单级等速加载下高压缩性软土 非线性大应变固结解析解

仇超1,李传勋1,李红军2   

  1. 1. 江苏大学 土木工程与力学学院,江苏 镇江 212013;2. 绿地浙江事业部,浙江 杭州 310015
  • 收稿日期:2021-02-01 修回日期:2021-03-26 出版日期:2021-08-11 发布日期:2021-08-16
  • 通讯作者: 李传勋,男,1978年生,博士,教授,主要从事岩土工程方面的教学和科研工作。E-mail: lichuanxun@yeah.net E-mail:2221823006@stmail.ujs.edu.cn
  • 作者简介:仇超,男,1995年生,硕士研究生,主要从事岩土工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51878320)。

Analytical solutions for one-dimensional nonlinear large-strain consolidation of high compressible soil under a ramp loading

QIU Chao1, LI Chuan-xun1, LI Hong-jun2   

  1. 1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Zhejiang Real Estate Division, Greenland Holding Group, Hangzhou, Zhejiang 310015, China
  • Received:2021-02-01 Revised:2021-03-26 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51878320).

摘要: 饱和软土大应变固结理论涉及复杂的材料非线性和几何非线性问题,致使其解析解很难获得,但非线性大应变固结模型解析解的工程意义却不言而喻。目前土体非线性压缩和渗透特性通常采用e- 和e- (e为孔隙比, 为有效应力, 为渗透系数)非线性关系描述。但大量室内固结渗透试验的结果表明,高压缩性软土发生较大应变时该非线性关系不再适用,而 - 和 - 非线性关系却能有效描述高压缩性软土的有效应力、渗透系数与孔隙比间的非线性变化规律。基于此,建立了变荷载下高压缩性软土一维非线性大应变固结模型,并给出特定参数下该固结模型的精确解析解和普适条件下固结模型的近似解析解。将应用固结模型计算的沉降曲线与室内等速加载下的试验沉降曲线对比,验证了该解析理论的可靠性。在此基础上,通过大量的计算研究参数 和 、外荷载和加荷速率对固结性状的影响。结果表明:压缩指数 一定时, 越小,土层的固结速率越快,底部超静孔压消散越快; 一定时, 越小,土层的固结速率越快, 底部超静孔压消散越快。按沉降定义的平均固结度 一般大于按孔压定义的平均固结度 ,即沉降的发展速率要快于孔 压消散速率。 ( 2) 1时,土层的沉降速率随外荷载的增加而减慢; ( 2) 1时,土层的沉降速率随外荷载的增加而加快; ( 2) 1时,土层的沉降速率与外荷载的大小无关。外荷载一定时,土层的平均固结速率随加荷速率增大而加快,同一深度处的超静孔压随加载速率增大而减小。

关键词: 高压缩性软土, 非线性, 大应变, 变荷载, 解析解

Abstract: The analytical solution for the nonlinear large strain consolidation model is significant for the actual engineering. However, since the large-strain consolidation theory of saturated soft soil involves complex material nonlinearity and geometrical nonlinearity problems, it is usually challenging to obtain an analytical solution for the large strain consolidation models. At present, the nonlinear compression and permeability characteristics of soils are usually described by e- and e- (e is the void ratio, is the effective stress, and is the permeability coefficient). However, large numbers of laboratory consolidation tests show that those nonlinear relationships are no longer suitable for the high compressibility soft soil with large strain. In contrast, the nonlinear relationships between the void ratio and effective stress as well as the void ratio and permeability coefficient of soft soil with high compressibility can be described by - and - more effectively. Therefore, in this study the one-dimensional nonlinear large strain consolidation model of the high compressible soft soil under a ramp loading is developed, and the exact analytical solution with the specific parameters and the approximate solutions under the general conditions are developed. The reliability of the proposed analytical solutions is validated by comparing the calculated settlement curve with the experimental settlement curve under a ramp loading in the laboratory. On this basis, the influences of parameters ( and ), external load, and loading rate on the consolidation behavior are investigated by numerous calculations. The results show that at a certain compression index , the smaller the , the faster the consolidation rate of the soil layer, and the faster the dissipation of the excess pore-water pressure at the bottom of the clay layer. Conversely, as is constant, the smaller the , the faster the consolidation rate of the soil layer, and the faster the dissipation of the excess pore-water pressure at the bottom of the clay layer. The average degree of consolidation in terms of settlement is generally larger than that of the consolidation accounting for the excess pore-water pressure , which means the development rate of settlement is faster than pore pressure dissipation. In addition, when ( 2) 1, the average consolidation rate decreases with the final external load increasing. When ( 2) 1, the average consolidation rate increases with the final external load increasing. When ( 2) 1, the average consolidation rate is independent of the final external load. Moreover, when the final external load is constant and the loading rate increases, the average consolidation rate increases while the excess pore-water pressure at the same depth decreases.

Key words: high compressible soil, nonlinearity, large-strain, time-dependent loading, analytical solution

中图分类号: 

  • TU 411.3
[1] 张治国, 沈安鑫, 张成平, PAN Y. T., 吴钟腾, . 基于非线性Pasternak地基模型的海床悬链线立管触地段初始侵彻静平衡解析解[J]. 岩土力学, 2021, 42(9): 2355-2374.
[2] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[3] 卢一为, 丁选明, 刘汉龙, 郑长杰, . 均匀黏弹性地基中X形桩纵向振动 响应简化解析方法[J]. 岩土力学, 2021, 42(9): 2472-2479.
[4] 王兴开, 夏才初, 朱哲明, 谢文兵, 宋磊博, 韩观胜, . 单级荷载下极软煤岩长期蠕变规律及本构模型研究[J]. 岩土力学, 2021, 42(8): 2078-2088.
[5] 林伟岸, 江文豪, 詹良通. 考虑真空加载过程及堆载随时间变化下 砂井地基的普遍固结解析解[J]. 岩土力学, 2021, 42(7): 1828-1838.
[6] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[7] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[8] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[9] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[10] 周凤玺, 周志雄, 柳鸿博, . 非均匀地基与均匀地基解答之间的相似关系: 弹性波速[J]. 岩土力学, 2021, 42(4): 892-898.
[11] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[12] 刘建, 乔兰, 李庆文, 李远, 赵国彦, . 分布载荷加载下中心直裂纹巴西圆盘的 断裂参数研究[J]. 岩土力学, 2021, 42(11): 2987-2996.
[13] 陈余, 李传勋, 冯翠霞, . 变荷载下考虑半透水边界和起始水力坡降的 软土一维固结解析解[J]. 岩土力学, 2021, 42(11): 3008-3016.
[14] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[15] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .