岩土力学 ›› 2023, Vol. 44 ›› Issue (8): 2458-2470.doi: 10.16285/j.rsm.2022.1347

• 测试技术 • 上一篇    

基于频域反射的细粒土压实度检测方法与误差评估

冉宇玲1, 2,柏巍1,孔令伟1,李雪梅3,樊恒辉2,杨秀娟2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100;3. 浙江省水利河口研究院,浙江 杭州 310020
  • 收稿日期:2022-08-30 接受日期:2022-11-09 出版日期:2023-08-21 发布日期:2023-08-21
  • 通讯作者: 柏巍,男,1982年生,博士,副研究员,主要从事特殊土土力学、地基与基础工程方面的研究工作。E-mail: wbai@whrsm.ac.cn E-mail:ranyl0113@163.com
  • 作者简介:冉宇玲,女,1998年生,硕士研究生,主要从事特殊土方面的相关研究。
  • 基金资助:
    国家自然科学基金面上项目(No. 41772339,No. 41877281)

Test method and error evaluation for compaction degree of fine soils based on frequency domain reflectometry

RAN Yu-ling1, 2, BAI Wei1, KONG Ling-wei1, LI Xue-mei3, FAN Heng-hui2, YANG Xiu-juan2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; 3. Zhejiang Institute of Hydraulics & Estuary, Hangzhou, Zhejiang 310020, China
  • Received:2022-08-30 Accepted:2022-11-09 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (41772339, 41877281).

摘要: 压实度是道路、房建、水利等工程领域评价土体压实质量的重要参数,与土体含水率和电导率密切相关。而频域反射技术(frequency domain reflectometry,FDR)可用于快速测定土体含水率和电导率。首先利用频域反射技术分别对多种压实状态下红黏土、膨胀土和黄土的含水率、电导率进行测量;然后对含水率测值进行室内标定,得到3种土的含水率标定曲线;通过偏最小二乘回归分析方法(partial least squares regression,PLSR)建立了3种土体的压实度-含水率-电导率之间的经验关系,并与实测值进行了对比分析;再根据扫描电子显微镜(scanning electron microscopy,SEM)和压汞法(mercury intrusion porosimetry,MIP)试验结果分析了其微观机制;最后对拟合公式得到的压实度预测值进行随机试样验证,建立与实测值的误差评估体系,结果表明基于压实度-含水率-电导率之间的关系而提出的拟合公式预测压实度的精度较高。相关研究可为道路、房建、水利等工程中土体压实度的快速检测提供参考。

关键词: 压实度, 频域反射, 含水率, 电导率

Abstract: The compaction degree is an important parameter for evaluating the quality of soil compaction in many engineering constructions such as roads, housing construction, and water conservancy project, and it correlates with moisture content and electrical conductivity. Frequency domain reflectometry (FDR) can rapidly measure soil moisture content and electrical conductivity. Firstly, in this research, FDR was adopted to rapidly measure the values of soil moisture content and electrical conductivity regarding lateritic soil, expansive soil, and loess at varying compaction degrees. Secondly, the measured values of moisture content were calibrated in laboratory, and the calibration curves of the three soils were obtained accordingly. Thirdly, empirical relationships between compaction degree, moisture content and conductivity of the three soils were established using the partial least squares regression (PLSR) analysis method, and compared with the measured value. Fourthly, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests revealed its mechanism from microscopic aspect. Finally, the predicted value of the compaction degree obtained by the fitting equation was verified, and an error evaluation system was established. The results show that such fitting equations based on the relationship between compaction degree, moisture content, and electrical conductivity have a high prediction accuracy. Therefore, the results in this work can provide a good reference for the rapid detection of soil compaction in roads, housing construction, water conservancy and other projects.

Key words: compaction degree, frequency domain reflectometry, moisture content, electrical conductivity

中图分类号: 

  • TU 433
[1] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[2] 孙晓明, 姜铭, 王新波, 臧金诚, 高祥, 缪澄宇, . 万福煤矿不同含水率砂岩蠕变力学特性试验研究[J]. 岩土力学, 2023, 44(3): 624-636.
[3] 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895.
[4] 郎瑞卿, 裴璐熹, 孙立强, 周龙, 李恒. 新拌不同液限淤泥固化土流动性试验研究[J]. 岩土力学, 2023, 44(10): 2789-2797.
[5] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[6] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[7] 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116.
[8] 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244.
[9] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[10] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
[11] 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034.
[12] 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340.
[13] 郑文红, 施天威, 潘一山, 罗浩, 吕祥锋, . 含水率对岩石电荷感应信号影响规律研究[J]. 岩土力学, 2022, 43(3): 659-668.
[14] 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748.
[15] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .