岩土力学 ›› 2020, Vol. 41 ›› Issue (10): 3425-3431.doi: 10.16285/j.rsm.2019.2129

• 岩土工程研究 • 上一篇    下一篇

沉管隧道卵石与碎石垫层力学变形特性对比研究

王勇1, 2,穆清君3,过超4,付佰勇4,何潇4   

  1. 1. 北京交通大学 土木建筑工程学院,北京 100044;2. 中交公路规划设计院有限公司,北京 100088; 3. 中交第二航务工程局有限公司,湖北 武汉 430000;4. 中交公路长大桥建设国家工程研究中心有限公司,北京 100088
  • 收稿日期:2019-12-22 修回日期:2020-05-11 出版日期:2020-10-12 发布日期:2020-11-07
  • 作者简介:王勇,男,1980年生,博士,教授级高级工程师,主要从事岩土、隧道及地下工程研究。

Comparative study on the mechanical deformation characteristics of pebble and gravel cushion in immersed tube tunnel

WANG Yong1, 2, MU Qing-jun3, GUO Chao4, FU Bai-yong4, HE Xiao4   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. CCCC Highway Consultants Co., Ltd, Beijing 100088, China; 3. CCCC Second Harbour Engineering Co., Ltd., Wuhan, Hubei 430000, China; 4. CCCC Highway Bridges National Engineering Research Centre Co., Ltd., Beijing 100088, China
  • Received:2019-12-22 Revised:2020-05-11 Online:2020-10-12 Published:2020-11-07

摘要: 国内外沉管隧道先铺基础多采用碎石作为垫层材料,目前尚无采用卵石的先例。卵石和碎石在表面光滑度、排列接触方式、颗粒间天然空隙率等物理特性的差异性将影响其力学性能表现。通过物理模型试验和数值模拟计算,对卵石和碎石垫层的力学变形特性进行对比分析。研究表明:(1)两种材料垫层压缩曲线均呈两阶段反弯曲线变化趋势,相同荷载条件下卵石垫层压缩量较碎石高,总体割线模量较碎石低约30%。(2)垫层厚度由0.8 m变为1 m时,卵石垫层割线模量增加了13.0%,碎石垫层割线模量增加了2.2%;卵石垫层力学变形性能对垫层厚度的变化较碎石垫层更敏感。(3)预压荷载由52.5 kPa增加到84 kPa时,卵石垫层割线模量增加了23.5%,碎石垫层割线模量增加了7.6%;预压荷载越大,卵石垫层能更早达到拐点从而表现出更稳定的力学性能;增加预压荷载对卵石垫层整体力学变形性能的改善较碎石垫层更明显。(4)随沟宽增大,垫层模量在前期再压缩阶段出现模量提高,而在全加载期内总体表现为模量降低;在全荷载范围内卵石垫层对垄沟尺寸变化的敏感度低于碎石垫层。(5)碎石垫层的整体力学性能优于卵石垫层,但两种垫层材料对结构沉降和受力状态的影响相对有限;在对施工偏差敏感度充分分析的基础上,卵石可替代碎石作为沉管隧道垫层材料。(6)开展卵石级配试验研究,获取最佳卵石级配,是未来研究方向。

关键词: 沉管隧道, 卵石垫层, 碎石垫层, 力学, 变形

Abstract: Gravel was widely applied as the cushion materials for most foundations of the immersed tunnels, while the pebble as an alternative material has not been used till now. The differences in physical characteristics such as surface smoothness, alignment, contact methods and natural porosity between the gravel and pebble will affect its mechanical performance. In this paper, the mechanical deformation characteristics of pebble and gravel cushion were comparatively studied through physical modelling tests and numerical simulations. The results show that: 1) The compression curves of the two material cushions both show a two-phase anti-bending trend. The compression of pebble cushions is higher than that of the gravel under the same loading condition, whereas the overall secant modulus of pebble is approximately 30% lower than that of the gravel. 2) When the thickness of the cushion increases from 0.8 m to 1 m, a 13% increase in the secant modulus for the pebble cushion is observed, while 2.2% for the gravel. The mechanical deformation properties of the pebble cushion are more prone to be influenced by the cushion thickness than the gravel cushion. 3) When the preload increases from 52.5 kPa to 84 kPa, the secant modulus of the pebble cushion increases by 23.5%, while the modulus of the gravel cushion increases by merely 7.6%. A larger preload load leads to an earlier inflection point for the pebble cushion so as to show more stable mechanical properties. The increase in the preload load can more significantly improve the overall mechanical deformation performance for the pebble cushion than for the gravel cushion. 4) As the ditch width increases, the secant moduli of both cushions decrease. The pebble cushion is less sensitive to the changes in ditch size than the gravel cushion in the full load range. 5) The performance of the overall mechanical properties of the gravel cushion are better than the pebble cushion, but the cushion materials have limited effects on the structural settlement and stress. The pebble material can be used as an alternative cushion material for the immersed tunnels after a full analysis of the sensitivity to construction deviation. 6) Investigations on the optimal pebble grading will be the priority in the follow-up study.

Key words: immersed tube tunnel, pebble cushion, gravel cushion, dynamics, deformation

中图分类号: 

  • U 454
[1] 谢济仁, 乔世范, 余鹏鲲, 内村太郎, 王功辉, 江耀, 方正, 田京立. 土质滑坡坡表倾斜变形的室内外试验研究[J]. 岩土力学, 2021, 42(3): 681-690.
[2] 陈曦, 曾亚武, . 基于Grasselli模型的一个新的岩石节理三维粗糙度指标[J]. 岩土力学, 2021, 42(3): 700-712.
[3] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[4] 吴奔, 刘维, 史培新, 付春青. 盾构隧道掘进面失稳螺旋破坏机制分析[J]. 岩土力学, 2021, 42(3): 767-774.
[5] 熊仲明, 吕世鸿, 李运良, 赵奇峰, 李进, 谭书舜, 张向荣, 朱玉荣, 姜磊, 杨琪凡, 张宁波, 张子栋. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782.
[6] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[7] 顾晓强, 吴瑞拓, 梁发云, 高广运, . 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.
[8] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[9] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[10] 杨春和, 张超, 李全明, 于玉贞, 马昌坤, 段志杰, . 大型高尾矿坝灾变机制与防控方法[J]. 岩土力学, 2021, 42(1): 1-17.
[11] 张 泽, 马 巍, ROMAN Lidia, MELNIKOV Andrey, 杨 希, 李宏璧. 基于冻融次数−物理时间比拟理论的冻土 长期强度预测方法[J]. 岩土力学, 2021, 42(1): 86-92.
[12] 王川, 冷先伦, 李海轮, 李刚, . 节理分布空间变异的地下洞室稳定性概率分析[J]. 岩土力学, 2021, 42(1): 224-232.
[13] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[14] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[15] 杨钊, 乔春生, 陈松. 基于蒙特卡罗法的岩体变形模量统计 特征及参数权重分析[J]. 岩土力学, 2020, 41(S1): 271-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[2] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[3] 蒋小伟,万 力,王旭升,武 雄,程惠红. 利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J]. , 2009, 30(10): 3163 -3167 .
[4] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[5] 许金华,何 川,夏炜洋. 水下盾构隧道渗流场应力场耦合效应研究[J]. , 2009, 30(11): 3519 -3522 .
[6] 张强勇,刘德军,贾 超,沈 鑫,刘 健,段 抗. 盐岩油气储库介质地质力学模型相似材料的研制[J]. , 2009, 30(12): 3581 -3586 .
[7] 刘艳辉,李 晓,李守定,赫建明. 盐岩地下储气库泥岩夹层分布与组构特性研究[J]. , 2009, 30(12): 3627 -3632 .
[8] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[9] 毛昶熙,段祥宝,吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. , 2009, 30(12): 3705 -3709 .
[10] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .