岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3249-3259.doi: 10.16285/j.rsm.2020.1598

• 基础理论与实验研究 • 上一篇    下一篇

挡土墙后EPS颗粒混合轻量土填料静止土压力 特性模型试验研究

侯天顺,杨凯旋   

  1. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100
  • 收稿日期:2020-10-26 修回日期:2021-01-24 出版日期:2021-12-13 发布日期:2021-12-14
  • 作者简介:侯天顺,男,1981年生,博士,副教授,主要从事岩土力学、地基基础工程与地质灾害防治方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No.51509211);中国博士后基金(No.2016M602863);陕西省留学人员科技活动择优资助项目(No.2018031);陕西省博士后基金项目(No.2017BSHYDZZ50);中央高校基本科研业务费专项资金项目(No.2452020169)。

Model test on earth pressure at rest of light weight soil mixed with EPS particles behind a retaining wall

HOU Tian-shun, YANG Kai-xuan   

  1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2020-10-26 Revised:2021-01-24 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51509211), the China Postdoctoral Science Foundation(2016M602863), the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province(2018031), the Postdoctoral Science Foundation of Shaanxi Province(2017BSHYDZZ50) and the Fundamental Research Funds for the Central Universities(2452020169).

摘要: 为确定EPS(发泡聚苯乙烯,expandable polystyrene)颗粒混合轻量土在挡土墙后的静止土压力特性,通过对素土和轻量土开展室外挡土墙模型试验,探究加卸载条件下土体在挡土墙后静止土压力、静止土压力系数、竖向沉降量的分布规律,揭示轻量土填料在挡土墙工程中的减压机制和沉降变形机制。结果表明:在加卸载之前,素土和轻量土的竖向土压力、侧向土压力随着填土深度的增加近似呈线性增加趋势,其理论值和实测值间的相对误差不大于26.35%。荷载对素土竖向土压力和侧向土压力的影响随着填土深度的增加而逐渐减小。轻量土养护成型后具有自立性,荷载对其影响深度有限,试验中轻量土的荷载影响区深度大致为H/2(H为墙高)。当填土深度小于H/2时,随着荷载的逐级增减,轻量土竖向土压力、侧向土压力增加和减小较为明显;当填土深度大于H/2时,竖向土压力、侧向土压力随着荷载的逐级增减逐渐出现收敛,变化幅度较小。素土与轻量土静止土压力系数在挡土墙后呈非线性分布,分别处于0.27~0.74和0.33~0.44范围内。由Jaky公式计算的轻量土静止土压力系数理论值基本大于试验实测值,但差值较小。素土的竖向沉降变形随填土深度的增加而逐渐减小,总体介于0~21.5 mm。而养护成型的轻量土在荷载的作用下,竖向沉降量变化不明显,总体介于0~2.8 mm。相比素土而言,由于EPS颗粒的缓冲作用以及水泥的固化作用,使养护成型的轻量土具有良好的缓冲性和自立性,可对竖向应力进行更有效的吸收和分散。轻量土可大大减小静止土压力、静止土压力系数和竖向沉降量,满足挡土墙工程中对填料减重增强的要求。

关键词: 轻量土, 挡土墙, 静止土压力, 静止土压力系数, 模型试验

Abstract: To determine the earth pressure at rest of light weight soil mixed with expandable polystyrene(EPS) particles behind a retaining wall, the model tests are conducted for remolded soil and light weight soil respectively. The distribution laws of earth pressure at rest, coefficient of earth pressure at rest and vertical settlement deformation of the filler behind retaining wall are explored under loading and unloading processes, and the mechanisms of pressure reduction and settlement deformation of light weight soil are clarified. The results show that the vertical earth pressure and lateral earth pressure of remolded soil and light weight soil increase linearly with the increasing of filling depth before loading and unloading, and the relative errors between theoretical values and measured values for vertical earth pressure and lateral earth pressure are no more than 26.35%. The effect of load on vertical earth pressure and lateral earth pressure decreases with the increase of filling depth for remolded soil. After curing, light weight soil has self-supporting property, thus the influencing depth of load on light weight soil is limited. In this test, the load influencing area depth of light weight soil is about 50% of the wall height. In the process of loading and unloading, when the filling depth is less than 50% of the wall height, the vertical earth pressures and lateral earth pressures of light weight soil increase or decrease obviously with the gradual load increasing or decreasing. When the filling depth is greater than 50% of the wall height, the vertical earth pressures and lateral earth pressures gradually converge with the gradual load increasing or decreasing, but the change range is smaller. The measured coefficients of earth pressure at rest of remolded soil and light weight soil are non-linear distribution behind the retaining wall, which are in the range of 0.27?0.74 and 0.33?0.44, respectively. The theoretical values of the coefficient of earth pressure at rest calculated by Jaky formula are basically larger than the measured values, but the difference is smaller. The vertical settlement deformation of remolded soil decreases with the increasing of filling depth, which is approximately 0?21.5 mm. The vertical settlement of light weight soil after curing has no obvious change under load, which is approximately 0?2.8 mm. Compared with remolded soil, light weight soil after curing has good buffering and self-supporting capacity, which can more effectively absorb and disperse the vertical pressure, due to the buffering effect of EPS particles and the solidification effect of cement. Light weight soil can greatly reduce the earth pressure at rest, the coefficient of earth pressure at rest and vertical settlement deformation, and meet the requirements of filling load reduction in retaining wall engineering.

Key words: light weight soil, retaining wall, earth pressure at rest, coefficient of earth pressure at rest, model test

中图分类号: 

  • TU413
[1] 林丹彤, 胡黎明. 多孔介质中磷负载纳米铁运动特性的模型试验[J]. 岩土力学, 2022, 43(2): 337-344.
[2] 周光新, 盛谦, 崔臻, 王天强, 马亚丽娜, 付兴伟, . 走滑断层错动影响下跨活断层铰接隧洞 破坏机制模型试验[J]. 岩土力学, 2022, 43(1): 37-50.
[3] 肖飞, 孔令伟, 刘观仕, 冯衡, 董义义, 曾二贤, . 中密风积沙地层金属装配式基础抗拔模型试 验与承载力改进计算方法[J]. 岩土力学, 2022, 43(1): 65-75.
[4] 吴慧明, 赵子荣, 林小飞, 史建乾, 龚晓南, . 主动排水固结法气举降水效应模型试验研究[J]. 岩土力学, 2021, 42(8): 2151-2159.
[5] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[6] 王崇宇, 刘晓平, 张家强, 曹周红, . 刚性墙后有限宽度土体被动滑裂面特征试验研究[J]. 岩土力学, 2021, 42(7): 1839-1849.
[7] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[8] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[9] 郭明伟, 马欢, 杨忠明, 王斌, 董学超, 王水林, . 常泰长江大桥施工阶段大型沉井基础沉降变形分析[J]. 岩土力学, 2021, 42(6): 1705-1712.
[10] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[11] 张玉, 李大勇, 梁昊, 张雨坤, . 风电空心锥形基础水平承载特性 及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
[12] 陶志刚, 任树林, 郝宇, 李强, 付强, 何满潮, . 层状反倾边坡破坏机制及NPR锚索控制效果 物理模型试验[J]. 岩土力学, 2021, 42(4): 976-990.
[13] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[14] 张纪蒙, 张陈蓉, 张凯, . 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学, 2021, 42(3): 783-789.
[15] 郑俊杰, 邵安迪, 谢明星, 景丹, . 不同填土宽度下设置EPS垫层挡土墙试验研究[J]. 岩土力学, 2021, 42(2): 324-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 肖世国,鲜 飞,王唤龙. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[5] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[6] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[7] 刘 润 ,王秀妍 ,刘月辉 ,王武刚. 点支撑缺陷下海底埋管热屈曲分析[J]. , 2011, 32(S2): 64 -69 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[10] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .