岩土力学 ›› 2021, Vol. 42 ›› Issue (11): 3101-3125.doi: 10.16285/j.rsm.2021.0462

• 岩土工程研究 • 上一篇    下一篇

隧道-滑坡相互作用影响及控制防护技术 研究现状与展望

张治国1, 2, 3, 4,毛敏东1,PAN Y. T.4,赵其华3,吴钟腾2   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 自然资源部丘陵山地地质灾害防治重点实验室 福建省地质灾害重点实验室, 福建 福州 350002;3. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059; 4. 新加坡国立大学 土木与环境工程系,新加坡 119077
  • 收稿日期:2021-04-13 修回日期:2021-10-11 出版日期:2021-11-11 发布日期:2021-11-12
  • 作者简介:张治国,男,1978年生,博士后,教授,主要从事地下工程等方面的教学与研究工作
  • 基金资助:
    国家自然科学基金资助项目(No. 41772331,No. 41977247);自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)课题(No. FJKLGH2020K004)

Research status and prospect of tunnel-landslide interaction and control protection technology

ZHANG Zhi-guo1, 2, 3, 4, MAO Min-dong1, PAN Y. T.4, ZHAO Qi-hua3, WU Zhong-teng2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Fujian Key Laboratory of Geohazard Prevention, Fuzhou, Fujian 350002, China; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 4. Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077
  • Received:2021-04-13 Revised:2021-10-11 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41772331, 41977247) and the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Natural Resources (Fujian Key Laboratory of Geohazard Prevention) (FJKLGH2020K004).

摘要: 随着国家山区高速公路与高速铁路建设的快速发展,新建隧道开挖诱发滑坡的地质灾害时有发生,同时既有隧道在滑坡作用下产生的病害也越来越严重,对隧道的施工和运营均造成了较大危害。为了促进高速公路与高速铁路隧道-滑坡体系研究的发展,归纳总结了国内外隧道-滑坡工程领域的学术研究现状、存在问题及发展前景。对隧道-滑坡相对位置关系及变形特征进行系统梳理;从地质调查分析、理论解析、模型试验、数值模拟和监测分析5个方面详尽剖析了隧道-滑坡相互作用影响的研究现状;从滑坡体加固、隧道加固和监控预测技术3个方面对隧道-滑坡相互作用影响的控制防护技术研究进行了全面阐述;指出现有研究中存在的不足和尚需讨论的方面,建议深入开展滑坡土体塑性、非线性接触、地震与降雨多因素耦合作用、离心模型试验的开发与利用、本构模型的适用性及隧道精细化建模等方面的研究,积极优化和创新防护控制措施技术,建立隧道-滑坡之间联动共享的新型监控成套技术体系,以期为隧道-滑坡体系工程领域的学术研究提供新的视角和基础资料。

关键词: 隧道, 滑坡, 相互作用影响, 控制防护技术, 研究综述

Abstract: With the rapid development of mountainous highways and high-speed railways in China, geological disasters caused by new tunnel excavation, such as landslides, are widespread. Meanwhile, the diseases caused by landslides in existing tunnels are also increasing, resulting in significant harm to the tunnel construction and operation. In this paper, the academic research status, existing problems, and the development prospects associated with the tunnel-landslide system were summarily all over the world. First, the relative spatial location relationship and deformation characteristics of the tunnel-landslide system were systematically investigated. Second, the detailed analyses of the current status and prospects of research on tunnel-landslide interaction from five aspects geological survey, theory, model test, numerical simulation and field monitoring. Then, the control and protection techniques of the tunnel-landslide interaction were expounded from landslide reinforcement, tunnel reinforcement, and monitoring and prediction technology, and the corresponding shortcomings in the existing research and the aspects that still need to be discussed were marked. Finally, it is recommended to carry out further research on the landslide soil plasticity, nonlinear contact, earthquake and rainfall multi-factor coupling effects, the development and utilization of centrifugal model tests, the applicability of constitutive models, and the fine modeling of tunnels. Also, the impact zones of tunnel excavation should be further optimized, and the corresponding novel control and protection technologies should be developed. On this basis, a new type of monitoring technology system linked and shared for tunnel-landslide can be thus established. This paper provides new perspectives and essential data for academic research on tunnel-landslide system engineering.

Key words: tunnel, landslide, interaction effect, control and protection technology, research review

中图分类号: 

  • U 451
[1] 张魁, 杨长, 陈春雷, 彭赐彩, 刘杰, . 激光辅助TBM盘形滚刀压头侵岩缩尺试验研究[J]. 岩土力学, 2022, 43(1): 87-96.
[2] 蔡征龙, 孟永东, 秦毅, 陈博夫, 田斌, . 基于改进Green-Ampt模型的滑坡 稳定时变可靠度分析[J]. 岩土力学, 2022, 43(1): 268-276.
[3] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[4] 黄波林, 殷跃平, 李滨, 白林丰, 秦臻, . 柱状危岩体坐落式崩塌产生涌浪的 简化数值模型与校验[J]. 岩土力学, 2021, 42(8): 2269-2278.
[5] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[6] 李跃, 徐卫亚, 易魁, 谢伟超, 张强, 孟庆祥, . 堆积体滑带土非饱和-饱和渗透特性试验研究[J]. 岩土力学, 2021, 42(5): 1355-1362.
[7] 刘成禹, 罗洪林, 李红军, 张向向, . 岩脉型岩爆的形成机制及控制技术—— 以乌兹别克斯坦卡姆奇克隧道为例[J]. 岩土力学, 2021, 42(5): 1413-1423.
[8] 宋战平, 郭德赛, 徐甜, 华伟雄, . 基于非线性模糊层次分析法的TBM 施工风险评价模型研究[J]. 岩土力学, 2021, 42(5): 1424-1433.
[9] 仉文岗, 王琦, 刘汉龙, 陈福勇, . 岩体空间变异性对隧道拱顶失效概率的影响[J]. 岩土力学, 2021, 42(5): 1462-1472.
[10] 王东英, 尹小涛, 杨光华, . 悬索桥隧道式锚碇夹持效应的试验研究[J]. 岩土力学, 2021, 42(4): 1003-1011.
[11] 谢济仁, 乔世范, 余鹏鲲, 内村太郎, 王功辉, 江耀, 方正, 田京立. 土质滑坡坡表倾斜变形的室内外试验研究[J]. 岩土力学, 2021, 42(3): 681-690.
[12] 任三绍, 张永双, 徐能雄, 吴瑞安, 刘筱怡. 含砾滑带土复活启动强度研究[J]. 岩土力学, 2021, 42(3): 863-873.
[13] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[14] 闫长斌, 汪鹤健, 杨继华, 陈馈, 周建军, 郭卫新, . 利用PLSR-DNN耦合模型预测TBM净掘进速率[J]. 岩土力学, 2021, 42(2): 519-528.
[15] 季伟伟, 孔纲强, 刘汉龙, 杨庆, . 软塑黄土地区隧道仰拱热力响应特性现场试验[J]. 岩土力学, 2021, 42(2): 558-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[6] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[10] 夏艳华 ,白世伟 . 基于水平集的复杂三维地层模型建模及在地下工程中的应用研究[J]. , 2012, 33(5): 1445 -1450 .