岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2898-2910.doi: 10.16285/j.rsm.2021.1374
兰韡1, 2,王卫东3,常林越1
LAN Wei1, 2, WANG Wei-dong3, CHANG Lin-yue1
摘要: 承压水抽降是深基坑工程面临的主要难题之一。群井抽水试验是合理分析基坑工程承压水水位降深和地表沉降的主要手段,具有重要意义。以上海某航站楼区域大规模深基坑现场抽水试验为例,结合场地工程地质和水文地质条件,对群井抽水过程中承压水水位变化及地表沉降进行分析,探究承压水水位降深对地层压缩及地表沉降的影响规律。结果表明:300 m监测范围内,地面沉降最大值为104.9 mm,最大水位降深为 21.85 m,每米水位降深(即单位水位降深)引起的地面沉降量约为5 mm;⑦层的最大土层压缩量为68.4 mm,单位水位降深引起的压缩量约为 3 mm;单位水位降深引起的地面沉降量随距离增加有减小的趋势,距离中心40~310 m范围内,单位水位降深引起的地面沉降量为4.22~1.17 mm。
中图分类号:
[1] | 戴天毅, 肖世国, . 考虑路堤−加固区相互作用的刚性桩复合 地基沉降算法[J]. 岩土力学, 2022, 43(S1): 479-489. |
[2] | 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456. |
[3] | AHMAD Hussein, MAHBOUBI Ahmad, NOORZAD Ali, HOSEINI Mohammad Hosein, . 包裹式土工格栅−砂土相互作用对条形基础承载 力−沉降特性的影响研究[J]. 岩土力学, 2022, 43(9): 2550-2567. |
[4] | 莫品强, 刘尧, 黄子丰, 滕鸿博, 陈斌, 陶祥令, . 复杂支护条件下深基坑支护桩−冠梁−支撑 的变形协调及空间效应研究[J]. 岩土力学, 2022, 43(9): 2592-2601. |
[5] | 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212. |
[6] | 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807. |
[7] | 金佳旭, 丁前绅, 刘磊, 威巍, 张雄, 张柴, . 好氧降解对垃圾土沉降影响试验及沉降模型[J]. 岩土力学, 2022, 43(2): 416-422. |
[8] | 韩逸冬, 邓岳保, 曹光形, 朱瑶宏, 姚燕明, . 考虑循环变温的软土热固结模型[J]. 岩土力学, 2022, 43(10): 2768-2776. |
[9] | 赵留园, 单治钢, 汪明元, . 地震作用下南黄海海上风电场水 平场地液化特性分析[J]. 岩土力学, 2022, 43(1): 169-180. |
[10] | 江帅, 朱勇, 栗青, 周辉, 涂洪亮, 杨凡杰, . 隧道开挖地表沉降动态预测及影响因素分析[J]. 岩土力学, 2022, 43(1): 195-204. |
[11] | 郭明伟, 马欢, 杨忠明, 王斌, 董学超, 王水林, . 常泰长江大桥施工阶段大型沉井基础沉降变形分析[J]. 岩土力学, 2021, 42(6): 1705-1712. |
[12] | 向伏林, 杨天亮, 顾凯, 施斌, 刘春, 刘苏平, 张诚成, 姜月华, . 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟[J]. 岩土力学, 2021, 42(6): 1743-1754. |
[13] | 李瑛, 陈东, 刘兴旺, 谢锡荣, 童星, 张金红. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832. |
[14] | 鲁泰山, 刘松玉, 蔡国军, 吴恺, 夏文俊, . 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学, 2021, 42(2): 565-573. |
[15] | 孙宏磊, 陆逸, 潘晓东, 史吏, 蔡袁强, . 真空预压作用下初始含水率 对疏浚淤泥固结影响研究[J]. 岩土力学, 2021, 42(11): 3029-3040. |
|