›› 2008, Vol. 29 ›› Issue (7): 1931-1937.

• 基础理论与实验研究 • 上一篇    下一篇

袋装砂井爆夯处理软土地基的数值模拟方法及现场试验验证

邓志勇1,张翠兵2,张志毅1   

  1. 1.铁道科学研究院 铁道建筑研究所,北京 100081;2.铁道部运输局,北京 100844
  • 收稿日期:2006-11-15 出版日期:2008-07-10 发布日期:2013-07-27
  • 作者简介:邓志勇,男,1968年生,博士,研究员,主要从事岩土力学与工程研究。

Numerical modelling of soft clay treatment by drainage consolidation with sand wick explosive vibration and its verification with in-situ experiments

DENG Zhi-Yong1, ZHANG Cui-Bing2, ZHANG Zhi-Yi1   

  1. 1. Institute of Railway Construction, China Academy of Railway Sciences, Beijing 100081, China; 2. Train Operation Bureu, Ministry of Railway, Beijing 100844, China
  • Received:2006-11-15 Online:2008-07-10 Published:2013-07-27

摘要: 袋装砂井爆夯法处理软土地基是利用炸药在设置有排水通道的软土中爆炸产生冲击和振动而使土体加固的方法。针对该法进行理论研究,提出了一种将袋装砂井爆夯处理软土地基的三维问题转化为二维平面应变问题的数值模拟方法:袋装砂井转化为等价砂墙;利用等效冲量原理,炮孔爆炸压力则转化为等效压力墙。数值模拟中考虑了土体骨架变形与孔隙水非达西渗流的耦合。对数值模拟的现场试验验证分析表明,沉降数值分析的结果与铁路宁启线软基处理现场测试结果具有很好的可比性。所提出的数值分析方法可模拟袋装砂井爆夯处理软土地基的超静孔隙水压产生和消散以及土体沉降变形的动态过程。

关键词: 爆夯, 袋装砂井, 软土, 地基处理, 数值模拟

Abstract: A method for treating soft clay by sand wick and explosive vibration is introduced. And a numerical modelling method is proposed for transforming the three-dimensional soft clay treatment by drainage consolidation with explosive vibrations into a two-dimensional plane strain problems. In this method, the sand drains is transformed into equivalent sand walls; and the explosive pressure on porthole is transformed into equivalent pressure walls, which is based on the mechanism of equivalent impulse. The deformation of soil skeleton and the non-Darcy seepage of pore water is coupled in the numerical modelling. A comparison between numerical results and in-situ experimental results shows that both results are comparable. The numerical method is capable of modelling the dynamic process of the occurrence and dissipation of excess pore pressure and the soil settelment in the course of dynamic consolidation.

Key words: drainage consolidation with explosive vibration, sand wick, soft clay, soil treatment, numerical modelling

中图分类号: 

  • TU 472.9
[1] 龚文惠, 赵旭东, 邱金伟, 李逸, 杨晗. 饱和软土大应变自重固结非线性分析[J]. 岩土力学, 2019, 40(6): 2099-2107.
[2] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[3] 张 奎, 赵成刚, 李伟华. 海底软土层对海洋地基场地动力响应的影响[J]. 岩土力学, 2019, 40(6): 2456-2468.
[4] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
[5] 张 聪, 梁经纬, 阳军生, 曹 磊, 谢亦朋, 张贵金, . 堤坝脉动注浆浆液扩散机制及应用研究[J]. 岩土力学, 2019, 40(4): 1507-1514.
[6] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[7] 李世俊, 马昌慧, 刘应明, 韩玉珍, 张 彬, 张 嘎, . 离心模型试验与数值模拟相结合研究 采空边坡渐进破坏特性[J]. 岩土力学, 2019, 40(4): 1577-1583.
[8] 蔡奇鹏, 甘港璐, 吴宏伟, 陈星欣, 肖朝昀, . 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40(3): 1067-1075.
[9] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[10] 杨爱武, 潘亚轩, 曹 宇, 尚英杰, 吴可龙, . 吹填软土低位真空预压室内试验及其数值模拟[J]. 岩土力学, 2019, 40(2): 539-548.
[11] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[12] 陈上元, 赵 菲, 王洪建, 袁广祥, 郭志飚, 杨 军, . 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332-342.
[13] 郑俊杰, 吕思祺, 曹文昭, 景 丹, . 高填方膨胀土作用下刚柔复合桩基 挡墙结构数值模拟[J]. 岩土力学, 2019, 40(1): 395-402.
[14] 吴建涛, 叶 霄, 李国维, 蒋 超, 曹雪山, . 高路堤下PHC桩加固软土地基的承载及变形特性[J]. 岩土力学, 2018, 39(S2): 351-358.
[15] 郭红仙, 周 鼎. 软土中基坑土钉支护稳定性问题探讨[J]. 岩土力学, 2018, 39(S2): 398-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[2] 任 松,姜德义,杨春和,藤宏伟. 共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J]. , 2010, 31(2): 416 -421 .
[3] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[4] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[5] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[6] 王协群,张有祥,邹维列,熊海帆. 降雨入渗条件下非饱和路堤变形与边坡的稳定数值模拟[J]. , 2010, 31(11): 3640 -3644 .
[7] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[8] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[9] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[10] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .