岩土力学 ›› 2022, Vol. 43 ›› Issue (4): 918-931.doi: 10.16285/j.rsm.2021.1176

• 基础理论与实验研究 • 上一篇    下一篇

花岗岩质边坡地震动力响应及破坏特征 大型振动台试验研究

周泽华1,吕艳1,苏生瑞1,刁钰恒1,王祚鹏1,王剑昆2,赵辉3   

  1. 1. 长安大学 地质工程与测绘学院,陕西 西安 710054;2. 中国地质环境监测院,北京 100081;3. 陕西翠华山国家地质公园,陕西 西安 710105
  • 收稿日期:2021-07-30 修回日期:2021-09-18 出版日期:2022-04-15 发布日期:2022-04-15
  • 通讯作者: 吕艳,女,1975年生,博士,副教授,主要从事地质环境调查评价、地质灾害风险管理、地质景观资源保护利用等方面的研究工作。 E-mail: lyuyan1118@163.com E-mail:zehua309@yeah.net
  • 作者简介:周泽华,男,1992年生,博士研究生,主要从事边坡地震工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 41672285);成都理工大学地质灾害防治与地质环境保护国家重点实验室开放基金(No. SKLGP2018K015);中央高校基本科研业务创新团队支持项目(No. 300102262908);山西省地勘项目(No. 220126200089)

Seismic response and failure characteristics of granite slope using large-scale shaking table test

ZHOU Ze-hua1, LÜ Yan1, SU Sheng-rui1, DIAO Yu-heng1, WANG Zuo-peng1, WANG Jian-kun2, ZHAO Hui3   

  1. 1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an, Shaanxi 710054, China; 2. China Institute of Geo-Environmental Monitoring, Beijing 100081, China; 3. The Geopark of Shaanxi Cuihua Mountain, Xi’an, Shaanxi 710105, China
  • Received:2021-07-30 Revised:2021-09-18 Online:2022-04-15 Published:2022-04-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672285), the Open Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project, Chengdu University of Technology (SKLGP2018K015), the Scientific Research and Innovation Projects for the Central Universities (300102262908) and the Shanxi Geological Prospecting Project (220126200089).

摘要: 地震触发的岩质边坡崩塌常造成巨大的灾害,特定地质条件下边坡地震动力响应及破坏机制是工程中的重要难题。以翠华山水湫池崩塌为研究对象,开展振动台试验,研究地震作用下受断层控制的岩质边坡动力响应及破坏机制。试验发现,当断层倾角大于临界角时,不连续界面处的部分反射波与透射波转变为滑行波,使得断层处加速度响应出现突变;模型边坡内部加速度峰值放大系数变化特征表现出显著的三阶段变化趋势;水平加速度响应呈现出随高程增加不断增大的特征,而竖直加速度峰值放大系数增加幅度较小;模型边坡的固有频率变化曲线可以分为3个阶段,整体呈现下降的趋势,表明模型动力特性发生变化。通过对比振动台试验与水湫池崩塌原型,发现含断层结构岩质边坡的主要破坏模式为边坡顶部在地震荷载作用下首先出现贯通的竖直拉裂缝,随后断层上盘破碎岩体裂解破坏,最终沿断层面发生剪切滑动。研究工作将为秦岭花岗岩地震山崩的风险预警提供研究示范,并为开发秦岭山崩遗迹提供科技支撑。

关键词: 水湫池崩塌, 断层, 振动台试验, 地震动力响应特征, 动力破坏特征

Abstract: Huge hazards are often caused by earthquake-induced rock slope failure. The study of dynamic response characteristics and failure mechanism of the rock slope in certain geological condition is an important issue in geotechnical engineering. Taking the Shuiqiuchi rock slope failure as an object of study, a shaking table test was carried out to study the dynamic response and failure mechanism of rock slope controlled by faults. The testing results show that when the dip angle of the fault is greater than a specific critical angle, part of the reflected and transmitted waves at the discontinuous interface change into sliding waves, resulting in a sudden change in the acceleration response at the fault. The peak acceleration amplification factor inside of the model slope presents a significant three-stage trend. Peak horizontal acceleration amplification factor increases obviously with the increase of elevation, while peak vertical acceleration amplification factor increases slightly with elevation. The natural frequency curve of the model slope can be divided into three stages with a downward trend, which indicates that the dynamic characteristics of the model have changed. By comparing the shaking table test with the Shuiqiuchi rock slope failure prototype, it is found that the main failure mode of the rock slope with fault structure is that the top of the slope first shows vertical tension cracks under the seismic load, followed by cracking damage of the broken rock body on the upper plate of the fault, and finally shear sliding occurs along the fault surface. This research will set example for the early risk warning of granite rock slope failure, and provide the basic data and scientific support for the development of Qinling Mountain geological heritages.

Key words: Shuiqiuchi rock avalanche, fault, shaking table test, seismic dynamic response characteristics, dynamic failure characteristics

中图分类号: 

  • P 64
[1] 安军海, 陶连金, 蒋录珍, . 盾构扩挖地铁车站结构地震反应特性振动台试验[J]. 岩土力学, 2022, 43(5): 1277-1288.
[2] 冯忠居, 孟莹莹, 张聪, 赖德金, 朱继新, 林路宇, . 强震作用下液化场地群桩动力响应及p-y曲线[J]. 岩土力学, 2022, 43(5): 1289-1298.
[3] 郭明珠, 谷坤生, 张合, 孙海龙, 王晨, 刘晃, . 强震作用下含软弱夹层顺层岩质斜坡 动力响应规律试验研究[J]. 岩土力学, 2022, 43(5): 1306-1316.
[4] 张聪, 冯忠居, 孟莹莹, 关云辉, 陈慧芸, 王振, . 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.
[5] 崔臻, 盛谦, 李建贺, 付兴伟, . 蠕滑错断-强震时序作用下跨活断裂 隧道变形破坏机制初步研究[J]. 岩土力学, 2022, 43(5): 1364-1373.
[6] 周光新, 盛谦, 崔臻, 王天强, 马亚丽娜, 付兴伟, . 走滑断层错动影响下跨活断层铰接隧洞 破坏机制模型试验[J]. 岩土力学, 2022, 43(1): 37-50.
[7] 董伟, 王学滨, . 岩土工程相似模拟试验观测的可靠 子区数字图像相关方法[J]. 岩土力学, 2021, 42(9): 2525-2534.
[8] 陈世杰, 肖明, 王小威, 陈俊涛, . 陡倾角断层下地下洞室地震破坏特性数值分析[J]. 岩土力学, 2021, 42(9): 2600-2610.
[9] 何江, 肖世国, . 多级拼装悬臂式挡墙地震永久位移计算方法[J]. 岩土力学, 2021, 42(7): 1971-1982.
[10] 刘小岩, 张传庆, 史铁勇, 周辉, 胡大伟, 朱国金, 朱勇, 王超, . 跨活断层深埋隧道轴线错动位移模式试验研究[J]. 岩土力学, 2021, 42(5): 1304-1312.
[11] 刘中宪, 刘英, 孟思博, 黄磊, . 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155.
[12] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[13] 冯忠居, 张聪, 何静斌, 董芸秀, 袁枫斌, . 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.
[14] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[15] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .